6 Pillars of Data Quality and How to Improve Your Data

Data quality refers to the degree of accuracy, consistency, completeness, reliability, and relevance of the data collected, stored, and used within an organization or a specific context. High-quality data is essential for making well-informed decisions, performing accurate analyses, and developing effective strategies. Data quality can be influenced by various factors, such as data collection methods, data entry processes, data storage, and data integration.

Maintaining high data quality is crucial for organizations to gain valuable insights, make informed decisions and achieve their goals.

In this article:

Why is data quality important?

Here are several reasons data quality is critical for organizations:

Revenue opportunities: Data quality directly affects an organization’s bottom line by enabling more effective marketing strategies based on precise customer segmentation and targeting. By using high-quality data to create personalized offers for specific customer segments, companies can better convert leads into sales and improve the ROI of marketing campaigns.

Data quality versus data integrity

Data integrity concentrates on maintaining consistent data across systems while preventing unauthorized changes or corruption of information during storage or transmission. The primary focus of data integrity is protecting data from any unintentional or malicious modifications, whether it is in storage or transit.

Key differences between data quality and data integrity include:

Learn more by reading: What is data reliability

6 pillars of data quality

1. Accuracy

Accuracy refers to the extent to which data accurately represents real-world values or events. Ensuring accuracy involves identifying and correcting errors in your dataset, such as incorrect entries or misrepresentations. One way to improve accuracy is by implementing data validation rules, which help prevent inaccurate information from entering your system.

2. Completeness

Completeness concerns whether a dataset contains all necessary records, without missing values or gaps. A complete dataset allows for more comprehensive analysis and decision-making. To improve the completeness, you can use techniques like imputing missing values, merging multiple information sources, or utilizing external reference datasets.

3. Timeliness and currency

Timeliness and currency ensure that your data is up-to-date and relevant when used for analysis or decision-making purposes. Outdated information can lead to incorrect conclusions, so maintaining up-to-date datasets is essential. Techniques like incremental updates, scheduled refreshes, or real-time streaming can help keep datasets current.

4. Consistency

Consistency measures the extent to which data values are coherent and compatible across different datasets or systems. Incorrect data can cause wrong conclusions and confusion among different users who rely on the information to make decisions. To improve consistency, you can implement data standardization techniques, such as using consistent naming conventions, formats, and units of measurement.

5. Uniqueness

Uniqueness refers to the absence of duplicate records in a dataset. Duplicate entries can skew analysis by over-representing specific data points or trends. The primary action taken to improve the uniqueness of a dataset is to identify and remove duplicates. You can use automated deduplication tools to identify and eliminate redundant records from your database.

6. Data granularity and relevance

Data granularity and relevance ensure that your dataset’s level of detail aligns with its intended purpose. Excessive granularity may lead to unnecessary complexity, while insufficient detail might make the data useless for specific analyses. Striking a balance between these two aspects ensures that you have relevant, actionable insights from your data.